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Mean-Field Lattice-Gas Description of the System 
COJHZO 

L. A. KLEINTJENS and R. KONINGSVELD 
CENTRAL LABORATORY DSM 
GELEEN,THENETHERLANDS 

ABSTRACT 

The mean-field l a t t i c e - g a s  model i n  t h e  p r e s e n t  form h a s  proven 
t o  be w e l l  a b l e  t o  d e s c r i b e  n e a r l y  q u a n t i t a t i v e l y  f l u i d  phase behav- 
iourof  non-polar and p o l a r  pure  components and mixtures  over  a l a r g e  
temperature  and p r e s s u r e  range.  I n  our  v e r s i o n  of  t h e  model i t  i s  
assumed t h a t  a l l  la t t ice  sites have t h e  s a m e  volume, independent of  
temperature  and pressure ,and  t h a t  every k ind  of l a t t i c e  s i te  h a s  a 
c h a r a c t e r i s t i c  i n t e r a c t i n g  s u r f a c e  a r e a .  The combinatory entropy 
of t h e  system is c o r r e c t e d  wi th  a n  e m p i r i c a l  parameter .  For mix- 
t u r e s  t h e  same procedure can be  followed and a d e s c r i p t i o n  of f l u i d  
phase behaviour ,  based upon t h e  parameters  of t h e  pure components 
and two b i n a r y  i n t e r a c t i o n  parameters ,  appear  t o  come out  q u i t e  
reasonably.  

The systems CO2, H 2 0  and mixtures  thereof  are most commonly 
used i n  s u p e r c r i t i c a l  e x t r a c t i o n .  It is shown h e r e  t h a t  t h e l a t t i c e -  
gas  model can q u i t e  w e l l  d e a l  wi th  t h e s e  systems. Values of t h e  
l a t t i c e - g a s  parameters  have been der ived  i n  t h e  o u t l i n e d  manner and 
p r e d i c t  t h e  second-type gas-gas demixing, known t o  occur  i n  t h i s  
system, i n  a n  e s s e n t i a l l y  c o r r e c t  way. 

INTRODUCTION 

Cr i t ica l  phenomena i n  pure components and mixtures  have been 

s t u d i e d  i n t e n s i v e l y  s i n c e  t h e  end of t h e  p a s t  century.  P ioneer ing  

work i n  t h i s  f i e l d  w a s  c a r r i e d  o u t  by Van d e r  Waals and Kohnstamm 

(1) , Bakhuis Roozeboom ( 2 )  , Timmermans (3) and o t h e r s .  Van d e r  
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216 K L E I N T J E N S  AND KONINGSVELD 

Waals i n  p a r t i c u l a r  h a s  a l r e a d y  shown that  phase  b e h a v i o u r  i n  f l u i d  

m i x t u r e s  unde r  s u p e r c r i t i c a l  c o n d i t i o n s  may b e  q u i t e  p e c u l i a r  f o r  

s u b s t a n c e s  d i f f e r i n g  much i n  c r i t i c a l  p o i n t  ( 4 )  and h e  p r e d i c t e d  

gas-gas demixing ( 5 ) ,  a phenomenon much l a t e r  e x p e r i m e n t a l l y  con- 

f i rmed (6 ,7 )  i n  several  g a s  m i x t u r e s .  

Ln s e v e r a l  f i e l d s  f l u i d  p h a s e  b e h a v i o u r  a t  s u p e r c r i t i c a l  con- 

d i t i o n s  has  become t e c h n o l o g i c a l l y  i m p o r t a n t .  Nowadays a number of  

polymers are manufactured i n  s o l v e n t s  ( o r  monomers) unde r  supe r -  o r  

n e a r - c r i t i c a l  c o n d i t i o n s .  A new r a p i d l y  expanding f i e l d  i s  t h e  ex- 

t r a c t i o n  of  v a l u a b l e  o r  t o x i c  chemica l s  from raw materials by means 

o f  s u p e r c r i t i c a l  s o l v e n t s .  R e v i e w  p a p e r s  on PVT-phenomena i n s u p e r -  

c r i t i c a l  f l u i d  m i x t u r e s  have  a p p e a r e d ,  e . g . ,  by S c h n e i d e r  (8-10).  

I h e  most commonly used  s o l v e n t s  are C 0 2 ,  H 0 and m i x t u r e s  t h e r e o f  

and t h i s  p a p e r  a t t e m p t s  a mean- f i e ld  l a t t i c e - g a s  d e s c r i p t i o n  of 

t h e s e  sys t ems .  

2 

An obv ious  f e a t u r e  o f  phase  t r a n s f o r m a t i o n s  unde r  n e a r - c r i t i c a l  

c o n d i t i o n s  i s  t h e  d i f f e r e n c e  i n  d e n s i t y  between p h a s e s  and i t s  

v a r i a t i o n  w i t h  p r e s s u r e  and  t e m p e r a t u r e .  Such s i t u a t i o n s  have  been  

t r e a t e d  t h e o r e t i c a l l y  by P r i g o g i n e  (11) , by F l o r y  ( 1 2 ) ,  by Pa t t e r son  

( 1  3 )  and by Simha ( 1 4 )  . 
S i n c e  w e  are  up a g a i n s t  l a r g e  d i f f e r e n c e s  i n  d e n s i t y  w e  p r e f e r  

dn approach which,  a p a r t  f rom h a v i n g  p roven  i t s  a b i l i t y  t o  cope 

wi th  s u c h  s i t u a t i o n s ,  h a s  t h e  a d d i t i o n a l  a d v a n t a g e  of g r e a t  simplic- 

i t y .  I t  h a s  been o u t l i n e d  i n  p r i n c i p l e  by Guggenheim (15) and 

l r a p p e n i e r s  e t  a1 ( 1 6 , 1 7 ) ;  Guggenheim deve loped  a r i g i d  l a t t i c e  

model f o r  m i x t u r e s .  One of t h e  a s sumpt ions  i n  h i s  t r e a t m e n t  is  t h e  

e q u a l i t y  of  t h e  p a r t i a l  s p e c i f i c  volumes of  b o t h  c o n s t i t u e n t s  i n  

all f l u i d  p h a s e s  i n  e q u i l i b r i u m .  This i s  o b v i o u s l y  n o t  s o  i n  a g a s -  

Liquid e q u i l i b r i u m .  By i n t r o d u c t i o n  of  randomly d i s t r i b u t e d  v a c a n t  

l a t t i c e  s i t e s  T r a p p e n i e r s  e t  a 1  c i r cumven ted  t h i s  problem. The 

% . o n c e n t r a t i o n  o f  h o l e s  i n  t h e  l a t t i c e  can b e  v a r i e d  between z e r o  

( r i g i d  l a t t i c e )  and 100% ( a b s o l u t e  vacuum) and any phase -dens i ty  

can t h u s  b e  r e p r e s e n t e d .  
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MEAN-FIELD LATTICE GAS MODEL 217 

The model is based on t h e  h o l e  t h e o r y  of t h e  l i q u i d  s ta te  

developed by Altar (18),  Cernush i  and Eyr ing  (19 ) ,  F r e n k e l  (20 )  and 

o t h e r s .  Much l a t e r  t h e  model w a s  a p p l i e d  t o  pu re  components by 

Mermin (21) and by Plulholland and Rehr ( 2 2 ) .  By combining t h e  l a t -  

t i c e - g a s  t r e a t m e n t  w i t h  Guggenheim's two-component l a t t i c e  model, 

T r a p p e n i e r s  et  al were a b l e  t o  p r e d i c t  q u a l i t a t i v e l y  t h e  v a r i o u s  f l u i d  

phase  e q u i l i b r i a .  S i m i l a r  v e r s i o n s  of t h e  model were used by o t h e r  

a u t h o r s ,  i . e . ,  t o  d e s c r i b e  polymer systems (23-25), b u t  u n t i l  now 

q u a n t i t a t i v e  d e s c r i p t i o n s  of  t h e  c r i t i c a l  phase  behav iour  have  been 

v e r y  r a r e .  

Eng inee r ing  types  o f  d e s c r i p t i o n s  (26-28) u s u a l l y  c o n t a i n  a 

l a r g e  number of a d a p t a b l e  pa rame te r s  and have t o  assume mixing r u l e s  

f o r  m i x t u r e  pa rame te r s .  'The i n h e r e n t  weakness of such  p rocedures  i s  

brought  o u t  by t h e  t h r e e f o l d  d i f f e r e n t i a t i o n  invo lved  i n  t h e  d e r i -  

v a t i o n  of c r i t i c a l  c o n d i t i o n s  from f r e e  e n t h a l p y  o r  f r e e  energy 

e x p r e s s i o n s .  

I n  t h e  model we u s e  h e r e  t h e  on ly  need f o r  a mixing r u l e  o c c u r s  

when a n  assumption has  t o  be  made as t o  how t h e  molar l a t t i ce-s i te  

volume v a r i e s  w i th  t h e  composi t ion i n  a m i x t u r e .  W e  u s e  t h e  sim- 

p l i s t  p o s s i b l e  v e r s i o n  and assume no dependence a t  a l l .  

I n  p rev ious  work w e  a l r e a d y  showed how T r a p p e n i e r s '  model can 

b e  extended i n t o  a q u a n t i t a t i v e  p r e d i c t i v e  d e s c r i p t i o n  of  f l u i d  

phase  behav iour  of  non-polar (29-30) and p o l a r  systems (31) and 

m i x t u r e s .  To a c h i e v e  t h i s ,  w e  have t o  a c c e p t  a s m a l l  number of  ad- 

j u s t a b l e  pa rame te r s  bu t  r e t a i n  t h e  s i m p l i c i t y  of t h e  model. We 

app ly  t h e  model t o  t h e  sys t em C 0 2 / H 2 0 ,  t h e  s o l v e n t s  used i n  most 

s u p e r c r i t i c a l  e x t r a c t i o n s .  

THEORY 

The b a s i c  e q u a t i o n s  i n  t h e  l a t t i c e - g a s  model are q u i t e s t r a i g h t -  

forward and have been pub l i shed  e l sewhere  (29-31). Here w e  summa- 

r i z e  t h e  b a s i c  assumptions and some impor t an t  e q u a t i o n s .  
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218 KLEINTJENS AND KONINGSVELD 

Pure Components -__- 

In a l a t t i c e - g a s  t rea tment  a f l u i d  pure  subs tance  i s  represented 

bv A l a t t i c e  composed of occupied and vacant  l a t t i c e  si tes (holes )  

a n d  can hence b e  viewed a s  a b inary  mixture .  The only  i n t e r a c t i o n  

to account for e x i s t s  between t h e  occupied s i tes  and t h e r e f o r e  t h e  

Fioles c o n t r i b u t e  mainly t o  t h e  entropy and t o  t h e  i n t e r n a l  energy 

o n l y  i n  RS much they a f f e c t  t h e  number of nearest-neighbour  contac ts  

between occupied si tes.  P r e s s u r e  and tempera ture  changes cause  t h e  

concent ra t ion  of h o l e s  t o  change b u t  t h e  volume p e r  l a t t i c e  s i t e  

(v,) i s  k e p t  c o n s t a n t .  

p l  e s t  I:o5sible way w i t h  a minimum of a d d i t i o n a l  assumptions,  we 

p o s t u l ~ t e  t h a t  all s i tes  i n  a g iven  system s h a l l  have t h e  same molar 

volume vg. We f u r t h e r  assume only n e a r e s t  neighbour i n t e r a c t i o n s  t o  

~ J I A Y  a r o l e .  

'10 d e a l  w i t h  mixtures  l a t e r  on i n  t h e  s i m -  

I c  d e r i v e  t h e  i n t e r a c t i o n  express ion  f o r  t h e s e  systems,  we f o l -  

low a cugges t ion  by Staverman ( 3 2 ) ,  l a te r  a l s o  used by Kanig ( 2 3 ) ,  

and drop t h e  r i g i d - l a t t i c e  c o n d i t i o n  t h a t  each s i t e  w i l l  have t h e  

53me numher of  neighbours  (= l a t t i c e  coord ina t ion  number). Rather ,  

we a s 5 i g n  a c h a r a c t e r i s t i c  i n t e r a c t i o n  s u r f a c e  a r e a  0% t o  each kind 

o f  s i t c  I .  F i n a l l y ,  w e  a l low a molecule t o  occupy more than one 

l a t t i c c ,  s i t e ,  say  m i  s i t es .  

Since w e  aim a t  d e s c r i b i n g  s u p e r c r i t i c a l  systems,  t h e  model 

~ h o u l d  be  v a l i d  f o r  l i q u i d s  and gases  a l i k e .  In t h i s  model t h e  

only d i f f e r e n c e  between a gas  and a l i q u i d  i s  t h e  h o l e  concent ra t ion  

,\ chang:e i n  h o l e  c o n c e n t r a t i o n  however a l t e r s  t h e  number of contacts  

between occupied si tes and hance t h e  t o t a l  i n t e r n a l  energy.  An ex- 

press ion  f o r  t h e  energy (AE)  o f  mixing no moles of h o l e s  w i t h  n l  

i w l e s  of molecules 1 each occupying ml  s i t es  can b e  derived straight- 

forwardly (29)' : 

( 
-1 !\E = -L (7 n CT n m w l l  0 0 1 1 1 ( G o n o  + u l n l m l )  

d i e r e  1 ' ~ ~ ~  i s  t h e  molar i n t e r a c t i o n  energy p e r  u n i t  c o n t a c t  s u r f a c e  
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MEAN-FIELD LATTICE-GAS MODEL 219 

area involved i n  a 1-1 i n t e r a c t i o n .  Changing t o  volume f r a c t i o n s  

+o and $1 of vacant  and occupied s i tes  ( 4 1 ~  = n (no + n m )-l = 1 - 1 1  
w e  can rewrite Eq.  (1)  i n t o :  

-1 AE/N 6 kT = g l l  (1 - Y ~ ) $ ~ $ ~  (1 - r1411) (2) 

where g = -% w u /kT, N = n + nIml, and y = 1 - 5 10 . kT h a s  

i t s  u s u a l  meaning, 
11 11 0 $ 0  1 1 0 '  

S u p e r c r i t i c a l  f l u i d s  undergo l a r g e  volume changes upon v a r i -  

a t i o n s  i n  pressure .  It i s  t h e r e f o r e  convenient  t o  have an expres- 

s i o n  f o r  t h e  Helmholz f r e e  energy of mixing AF a s  a s t a r t i n g  equa- 

t i o n  f o r  o t h e r  d e r i v a t i v e s .  To o b t a i n  such a n  express ion ,  w e  f o l -  

low t h e  procedure used f o r  s t r i c t l y - r e g u l a r  systems (15) and add 

t o  AE t h e  usua l  (a thermal)  combina tor ia l  entropy of mixing terms. 

However, i t  is w e l l  e s t a b l i s h e d  (33) t h a t  t h e  athermal  entropy of 

mixing express ion  above g e n e r a l l y  i s  n o t  s u f f i c i e n t  t o  f i t  exper i -  

mental  d a t a .  W e  t h e r e f o r e  i n c l u d e  a n  e m p i r i c a l  entropy c o r r e c t i o n  

term of  t h e  form $o$l ct . 
s t r a c t i o n  s e r v i n g  merely as a framework f o r  convenient  d e r i v a t i o n  

of u s a b l e  thermodynamic r e l a t i o n s .  

By now t h e  l a t t i c e  has  become an ab- 

A l l  t h i s  l e a d s  t o  t h e  fo l lowing  express ion  f o r  t h e  change i n  

Helmholtz f r e e  energy upon mixing no moles  of vacant  l a t t i c e  s i tes  

wi th  n1 moles of subs tance  1, each of m l  s i t es :  

The c o n c e n t r a t i o n  v a r i a b l e  9, (= 1 - +o)  is ,  w i t h i n  t h e  framework 

of t h e  model, d i r e c t l y  r e l a t e d  t o  t h e  d e n s i t y  d l  of t h e  system. 

For a subs tance  wi th  molar m a s s  M1 t h i s  r e l a t i o n  i s  given by:  

Ml/Voml - t o t a l  m a s s  
t o t a l  volume N v 

- nl  Ml = dl = 

0 0  
( 4 )  
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220 KLIENTJENS AND KONINGSVELD 

The e q u a t i o n  o f  s tate e x p r e s s i o n  f o r  t h e  f l u i d  f o l l o w s  convent ional ly  

from A F: 

By s u b s t i t u t i o n  of  Eq. ( 4 )  t h i s  e x p r e s s i o n  can b e  r e w r i t t e n  i n  a n  

e q u a t i o n  of  s t a t e  i n  measu rab le  q u a n t i t i e s  c o n t a i n i n g  4 a d j u s t a b l e  

p a r a m e t e r s .  Three  of them (v , gll,y) do have  a p h y s i c a l  meaning 

a l l o ~ i r i g  t h e i r  o r d e r  of  magni tude t o  b e  e s t i m a t e d ;  a1 i s  a p u r e l y  

e m p i r i c a l  c o r r e c t i o n  p a r a m e t e r .  

L'anderWaals ( 1 )  a l r e a d y  showed t h a t  p a r a m e t e r s  i n  a n e q u a t i o n  

o f  s t a t e  c a n  b e  v e r y  w e l l  de t e rmined  from t h e  e x p e r i m e n t a l  gas-  

l i q u i d  c r i t i c a l  p o i n t .  A s  w a s  shown b e f o r e  (29-31) e x p r e s s i o n s  f o r  

Lhc c r i t i c a l  c o n d i t i o n  and f o r  t h e  s p i n o d a l "  can  b e  d e r i v e d  e a s i l y .  

1:xpressed i n  volume f r a c t i o n s  t h e y  r e a d :  

+T'ol lowing; L rappen ie r s  e t  a1  (16)  the s p i n o d a l  f o r  a m i x t u r e  of 

1 'r , v vacan t  and occup ied  l a t t i c e  s i tes ,  u s u a l l y  g i v e n  by ( a p / a V )  

0 ,  i s  d e f i n e d  by: 

2 2 
'This e x p r e s s i o n  can  b e  s i m p l i f i e d  t o  ( 2 9 ) :  ( a  AF/a@l ) v , , , =  0 

111 '1 sim:Llar way one  o b t a i n s  t h e  c r i t i c a l  c o n d i t i o n  o f  such  a 

.c "s t em f 1-om = 0 l e a d i n g  t o  ( 2 9 )  : 
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MEAN-FIELD LATTICE-GAS MODEL 221 

I I i te rac t ions  between molecules are u s u a l l y  temperature  depen- 

dent .  

l e t  experimental  d a t a  determine what t h e  temperature  dependence of 

wl l  (and hence g l l )  w i l l  be. 

gas- l iqu id  equi l ibr ium p r e s s u r e  and volumes of  both phases are 

known a t  s e v e r a l  temperatures .  We use  some of t h e s e  da ta  t o  es tab-  

l i s h  t h e  temperature  dependence of g 

U n t i l  h e r e  w e  assumed g l l  t o  b e  c o n s t a n t ,  bu t  i t  is  b e t t e r  to 

For t h e  subs tances  considered h e r e  

11' 

I n  t h e  p r e s e n t  model a gas- l iqu id  equi l ibr ium is completely 

determined by t h e  e q u a l i t y  of t h e  pressures  and of t h e  chemical 

p o t e n t i a l s  of si tes 1 i n  both phases. The la t ter  e q u a l i t y  l e a d s  t o  

(29,30) : 

where and are t h e  phases i n  equi l ibr ium.  

A s i m i l a r  e x p r e s s i o n i s  ob ta inedby s u b s t i t u t i o n  of E q .  (5) i n t o  

t h e  a d d i t i o n a l  equi l ibr ium condi t ion :  p '  = p". With t h e s e  two 

equat ions ,  t o g e t h e r  wi th  Equation 5,  one can c a l c u l a t e  t h e  compo- 

s i t i o n s  and thus t h e  d e n s i t i e s  of both phases. On t h e  o t h e r  hand 

t h e s e  equat ions  can a l s o  b e  used t o  e s t a b l i s h  t h e  temperature  

dependence of  g l l (T)  and t h e  v a l u e  of v 

phase d e n s i t i e s  a t  g iven  a1 and y 

o r  ml  from experimental  

1' 

Binary Mixtures 

I n  t h e  present  v e r s i o n  of t h e  l a t t i c e - g a s  model a b i n a r y  mix- 

t u r e  i s  represented  by a t e r n a r y  system composed of sites 1,  si tes 

2 and a s i n g l e  kind of vacant  l a t t i c e  s i t e s ,  a l l  with t h e  same vol- 

ume per  s i t e  v . We thus  have t h r e e  concent ra t ion  v a r i a b l e s  (@ 

$1, $2) and t h r e e  k i n d s  of i n t e r a c t i o n s  (1-1, 2-2, 1-2). Parameters 

d e s c r i b i n g  t h e  1-1 and 2-2 i n t e r a c t i o n  are  obta ined  from d a t a  on 

0' 
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222 KLEINTJENS AND KONINGSVELD 

t h e  p u r e  s u b s t a n c e s ;  o n l y  t h e  1-2 i n t e r a c t i o n  c a l l s  f o r  e x t r a  exper-  

imen ta l  i n f o r m a t i o n  on t h e  m i x t u r e .  

'l'he Helmholtz f r e e  ene rgy  e x p r e s s i o n  f o r  a m i x t u r e  can  b e  de- 

r i v e d  i n  a s i m i l a r  way as f o r  a p u r e  s u b s t a n c e  (29)  and r e a d s :  

- 1:& o,, @ 1  - gA2 + 0 2  $ 2  

where N = n + nlml + n2m2, ,o 0 
q = 1 - y l + l  - y2@2.  The l a s t  two 

terms of E q .  (9) ar ise  from AF s t a n d i n g  f o r  t h e  change i n  f r e e e n e r -  

gy of  mixing sys t em I (= c o n s t i t u e n t  1 + h o l e s )  w i t h  sys t em I1 (con- 

s t i t u e n t  2 + h o l e s )  where t h e  compos i t ions  oOl and oO2 of  :;ystenls 

L and XI are independen t  of t h e  compos i t ion  i n  t h e  m i x t u r e .  

'l'hese two terms do n o t  conce rn  u s  s i n c e  they  do n o t  show up i n  

s p i n o d a l  and c r i t i c a l  c o n d i t i o n s  and c a n c e l  i n  g a s - l i q u i d  s q u i l i b -  

r ium e x p r e s s i o n s .  It is  wor thwhi l e  t o  compare Eq. ( 9 ) ( m i x t u r e )  

w i t h  t h e  co r re spond ing  e x p r e s s i o n  (5) f o r  t h e  s i n g l e  s u b s t a n c e s  i. 

The v a l u e s  o f  01 i, gii, y i ,  mi o c c u r r i n g  i n  E q .  (9 )  a r e  n o t  a f f e c t e d  

by t h e  mixing,  t h e  l a t t e r  p r o c e s s  b e i n g  expres sed  i n  c i I 2  a n d  p 

o n l y ,  w i t h  no new y v a l u e  b e i n g  needed. 
1 2  

The s i m p l i c i t y  of E q .  ( 9 )  o b v i o u s l y  arises from t h e  s i m p l e  

model a s sumpt ions  which need t o  b e  j u s t i f i e d  by t h e  a p p l i c a b i l i t y  

of t h e  p rocedure .  

The p r e s s u r e  e x p r e s s i o n  f o r  a m i x t u r e  r e a d s :  
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MEAN-FIELD LATTICE-GAS MODEL 223 

Express ions  f o r  chemical  p o t e n t i a l s ,  s p i n o d a l  and c r i t i c a l  cond i t ion  

can  b e  d e r i v e d  from Eq. (9) and are l i s t e d  i n  Ref. 29. The volume 

f r a c t i o n s  4 
which i n v o l v e s  t h e  s i m p l i c i t y  of  t h e  f i n a l  e q u a t i o n s .  I n  e x p e r i -  

men ta l  p r a c t i c e ,  however, one  h a s  t o  d o ,  e . g . ,  w i t h  t h e  two m o l e  

f r a c t i o n s  i n  a b i n a r y  system. They are r e l a t e d  t o  t h e  'model' 

volume f r a c t i o n s  by:  

@ l  and 4 are conven ien t  v a r i a b l e s  t h e  i n t r o d u c t i o n  of 2 0' 

T h i s  e x p r e s s i o n  a l l o w s  a r e t u r n  t o  p h y s i c a l l y  r e l e v a n t  v a r i a b l e s  a t  

any moment i n  t h e  c a l c u l a t i o n .  

APPLICATION OF THE MODEL TO C02/H20 

I n  F i g .  la,  b i t  is shown t h a t  bo th  p u r e  C02 and H 0 can b e  
2 

d e s c r i b e d  f a i r l y  w e l l  by t h e  model o v e r  q u i t e  a t empera tu re  and 

p r e s s u r e  range.  I n  t h e  d e r i v a t i o n  of t h e  pa rame te r s  w e  used t h e  

expe r imen ta l  g a s - l i q u i d  c r i t i c a l  p o i n t  and some g a s - l i q u i d  e q u i l i b -  

r ium d e n s i t i e s ,  a t  g i v e n  p r e s s u r e s  and t e m p e r a t u r e s ,  as r e p o r t e d  i n  

l i t e r a t u r e  (34). S i n c e  w e  p o s t u l a t e d  t h a t  v shou ld  be  t h e  same 

f o r  a l l  s i tes  i n  t h e  m i x t u r e s ,  t h e  d e r i v a t i o n  of t h e  pa rame te r s  of  

b o t h  H 0 and GO w a s  c a r r i e d  o u t  for  t h e  same, a r b i t r a r i l y  chosen 

v a l u e  of  v = 25 cm /mole.  The p rocedure  f o r  t h e  c a l c u l a t i o n  of  

t h e  pa rame te r s  i s  a s  f o l l o w s .  For a n  e s t i m a t e d  v a l u e  of  m l  t h e  

c r i t i c a l  p o i n t  i s  f i t t e d  w i t h  Eqs. ( 5 ) ,  ( 6 ) ,  and ( 7 )  l e a d i n g  t o  

v a l u e s  f o r  u 1' Y1 and g . The t empera tu re  dependence of g 

is o b t a i n e d  from some e q u i l l b r i u m  d e n s i t i e s  u s i n g  Eqs. (5) and (8) 

f o r  b o t h  phases .  

dependence on T-', w e  r e p e a t  the c a l c u l a t i o n  v a r y i n g  ml  u n t i l  t h e  

b e s t  a c h i e v a b l e  f u l f i l l m e n t  of t h i s  c o n d i t i o n  i s  reached .  The 

v a l u e s  of t h e  pa rame te r s  so o b t a i n e d  are g iven  i n  T a b l e  1. 

2 2 3  

11 1'Gr;t 

Assuming g I1  t o  have  t o  show t h e  u s u a l  l i n e a r  
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MEAN-FIELD LATTICE-GAS MODEL 225 

TABLE 1 

Values of t h e  I n t e r a c t i o n  Parameters 

r e -  -1.6368 

1 g -1.1199+468.25/T 

H2° 

1.5467 
-2.469 
-0.5473+297. 1/T+3xId/r2 

0.72 
25 

Mixture  

0.92 
- 
-56.8626+56.8~10 3 IT-  

- 129x105/T2 

25 
- 

Better agreement between d a t a  and d e s c r i p t i o n  t h a n  t h e  p r e s e n t  

one can b e  achieved by a s imultaneous f i t t i n g  of a l l  e x i s t i n g  exper- 

imental PVT-data of a system. T h i s  i n v o l v e s  a more s o p h i s t i c a t e d  

computer program which is now be ing  developed.  A l l  c a l c u l a t i o n s  

shown i n  t h i s  paper  w e r e  c a r r i e d  o u t  on a desk-computer (HP 9830) .  

Having determined t h e  v a l u e s  of t h e  parameters  of t h e  p u r e  

c o n s t i t u e n t s  of a mixture ,  w e  can now t r y  t o  d e s c r i b e  t h e  PVT-be- 

h a v i o u r  of t h e  mixture  i t s e l f .  A s  w a s  shown f o r  po lye thylene /  

e t h y l e n e  and CH4/CO2 such a d e s c r i p t i o n  can b e  obta ined  w i t h  param- 

eters d e r i v e d  from b i n a r y  c r i t i ca l  p o i n t s  (29) .  To t h i s  end t h e  

b i n a r y  mixture  e x p r e s s i o n s  f o r  s p i n o d a l  and c r i t i c a l  c o n d i t i o n  

analogous t o  Eqs. (6)  and (7 )  are used. 

Experimental  b i n a r y  c r i t i c a l  p o i n t s  and g a s - l i q u i d  equi l ibr ium 

d e n s i t i e s  a t  g i v e n  tempera ture  and p r e s s u r e  f o r  t h e  system C 0  /H 0 2 2  

2 FIGURE 1. PVT-diagrams f o r  i n d i c a t e d  tempera tures  ( i n  K) f o r  CO 
(a )  and H20 (b) .  

Experimental  d a t a  ( 3 4 )  ----- smoothed i so therms 
0 g a s - l i q u i d  c o e x i s t e n c e  
o c r i t i c a l  p o i n t  

C a l c u l a t e d  ___ i so therms 
_._._ g a s - l i q u i d  c o e x i s t e n c e  
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226 KLEINTJENS AND KONINGSVELD 

P, MPa 

1 
300 

200 

100 

/A\ 

'2 

F I G U K F  ? .  Curves of t h e  e x p e r i m e n t a l  compos i t ions  of t h e  gas - l iqu id  
e q u i l i b r i u m  ( a t  l o w  p r e s s u r e ,  c u r v e s  1-5) and t h e  gas-gas 
e q u i l i b r i u m  ( a t  h i g h  p r e s s u r e ,  c u r v e  5) a t  t h e  i n d i c a t e d  
t e m p e r a t u r e s  ( 3 4 )  f o r  t h e  sys t em CO / H 2 0 ;  c r i t i c a l  
p o i n t s .  A t  266OC t h e  c r i t i c a l  p o i n z s  of t h e  g a s - l i q u i d  
and t h e  gas-gas  e q u i l i b r i u m  r e g i o n  c o i n c i d e ,  t o  form a t  
lower  t e m p e r a t u r e s  a c o n t i n u o u s  demixing r e g i o n  up t o  
v e r y  h i g h  p r e s s u r e s  ( c u r v e s  6 and 7 ) .  

are r e p o r t e d  i n  t h e  l i t e r a t u r e  ( 3 4 ) .  F i g .  2 shows some o f  t h e  

e x i s t i n g  d a t a .  T h e  s y s t e m  shows g a s - l i q u i d  e q u i l i b r i a  b u t  a l s o  

gas-gas  e q u i l i b r i a  o f  t h e  second  t y p e  (35) a t  h i g h  p r e s s u r e s  and 

t e m p e r a t u r e s  a round  t h e  c r i t i c a l  t e m p e r a t u r e  of water. We u s e  

o n l y  some c r i t i c a l  p o i n t s  of  t h e  g a s - l i q u i d  e q u i l i b r i u m  r a n g e  of 
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MEAN-FIELD LATTICE-GAS MODEL 227 

CO /H 0 t o  d e r i v e  t h e  v a l u e s  of t h e  two b i n a r y  interact ionparameters  

a12 and g12(T) .  

composi t ion is i t  q u i t e  s t r a i g h t f o r w a r d  t o  c a l c u l a t e  t h e  c r i t i c a l  

composi t ion i n  l a t t i c e  s i t e  volume f r a c t i o n s  and t h e  two b i n a r y  

pa rame te r s  a t  t h a t  t empera tu re  u s i n g  Eqs. (10)  and (11) and t h e  ex- 

p r e s s i o n s  f o r  s p i n o d a l  and c r i t i c a l  c o n d i t i o n s  of a m i x t u r e .  The 

v a l u e s  of c i I2  and g12 were determined a t  t h r e e  d i f f e r e n t  c r i t i c a l  

t empera tu res  (and of  c o u r s e  a l s o  d i f f e r e n t  p r e s s u r e s  and compo- 

s i t i o n s ) .  The v a l u e  of g I 2  proved t o  be  t empera tu re  dependent ;  u 

2 2  
From t h e  c r i t i c a l  p r e s s u r e ,  t empera tu re  and 

1 2  
was h a r d l y  a f f e c t e d  by t empera tu re .  

g iven  i n  Tab le  1. 

The v a l u e s  of g12 and ctI2 are 

Having d e r i v e d  t h e  v a l u e s  of t h e  b i n a r y  i n t e r a c t i o n  pa rame te r s ,  

w e  can c a l c u l a t e  t h e  complete  t e r n a r y  phase diagram w i t h  t h e  der ived 

F 

/ I 'y$ 
I '  

/ 

'IGURE 3. C a l c u l a t e d  t e r n a r y  l a t t i c e  g a s  r e p r e s e n t a t i o n  of gas- 
l i q u i d  and gas-gas e q u i l i b r i a  f o r  t h e  system H20/C02. 
Temperatures  are  as i n d i c a t e d  i n  F i g .  2. 
----_ s p i n o d a l s  
_._._ c r i t i c a l  l i n e  

g a s - l i q u i d  and gas-gas c o e x i s t e n c e  
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p, MPi 

t 
30C 

20L 

1 oc 

I 

I 
I 
I 

I 
I 
I 

I 

2 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 

’2 

I’JGIJRRE 4 .  Phase diagram of t h e  system C02/H20, d e r i v e d  from t h e  
c a l c u l a t e d  l a t t i c e - g a s  r e p r e s e n t a t i o n  (F ig .  3 ) .  The 
c a l c u l a t e d  behav iour  is i n  good agreement wi th  t h e  
expe r imen ta l  f i n d i n g s  ( F i g .  2 ) .  The gas-gas demixing 
reg, ion i s  p r e d i c t e d  w i t h i n  expe r imen ta l  e r r o r .  For 
s i m p l i c i t y  o n l y  s p i n o d a l  c u r v e s  are shown a t  temperannes 
6 and 7 .  Temperatures  are as i n d i c a t e d  i n  F ig .  2 .  

~ g a s - l i q u i d  and gas-gas e q u i l i b r i u m  composi t ions 
s p i n o d a l s  -_--_ 
c r i t i c a l  p o i n t s  
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230 KLEINTJENS AND KONINGSVELD 

i.) w e  use  i d e n t i c a l  v -values  f o r  all s i tes  i n  a mixture  and thus  

avoid d e t a i l e d  mixing r u l e s  f o r  v t h a t  may l e a d  t o  g r e a t l y  uncer- 

t a i n  terms i n  h i g h e r  d e r i v a t i v e s  of t h e  f r e e  energy with r e s p e c t  t o  

t h e  composition of t h e  mixture .  O f  course ,  our  assumption c.an be  

viewed as a s p e c i a l  form of  a mixing r u l e .  

i i )  t h e  i n t r o d u c t i o n  of c h a r a c t e r i s t i c  i n t e r a c t i n g  c o n t a c t  s u r f a c e  

a r e a s  l e a d s  t o  a v e r s a t i l e  express ion  f o r  t h e  i n t e r n a l  energy of 

mixing. 

In t h e  p r e s e n t  t rea tment  t h e  mathematical  express ions  a r e q u i t e  

s imple and a l s o  a l low c a l c u l a t i o n  of v a l u e s  f o r  t h e  a d j u s t a b l e  

parameters  i n  c a s e s  where only s c a r c e  d a t a  a r e  a v a i l a b l e .  

suitab1.e d a t a  are  c r i t i c a l  d a t a  and,  i n  a d d i t i o n ,  some l iqu id-gas  

equi l ibr ium d e n s i t i e s  o r  composi t ions.  Sometimes c r i t i c a l  d a t a  a r e  

not  a v a i l a b l e , ,  e . g . ,  because t h e  system decomposes b e f o r e  reaching 

c r i t i c a l  c o n d i t i o n s .  Then more n o n - c r i t i c a l  d a t a ,  l i k e  l i q u i d  

d e n s i t y  as a f u n c t i o n  of p r e s s u r e  and temperature ,  may s e r v e  t o  

determine t h e  parameters  i n  Eq .  ( 3 ) .  We have r e c e n t l y  found t h i s  

approach t o  work q u i t e  w e l l  wi th  a subs tance  l i k e  molten poly- 

e t h y l e n e ,  y i e l d i n g  parameter  v a l u e s  t h a t  could b e  used s u c c e s s f u l l y  

t o  p r e d i c t  lower c r i t i c a l  phase behaviour  of po lye thylene  i n  s o l -  

vents  l i k e  e t h y l e n e  and n - p a r a f f i n s  ( 3 0 , 3 6 ) .  

The most 

One p o i n t  of f u r t h e r  r e s e a r c h  e x i s t s  w i t h  a n  i n v e s t i g a t i o n  of 

o t h e r  thermodynamic d a t a  ( s p e c i f i c  h e a t ,  h e a t  of v a p o r i z a t i o n ,  ex- 

cess volume) as a b a s i s  t o  c a l c u l a t e  a d j u s t a b l e  parameters .  

SYMBOLS 

‘iE = Energy o f  mixing 

AT = Helmholtz f r e e  energy of mixing 

R = Cas cons tan t  

I = Temperature 

V = Volume 

g i j  = i - j i n t e r a c t i o n  parameter  
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Boltzmann's c o n s t a n t  

Number of  l a t t i c e  s i tes  i n  molecule  i 

Number of  moles i 

P r e s s u r e  

Mole f r a c t i o n  of i 

i - j molar  i n t e r a c t i o n  energy p e r  u n i t  c o n t a c t  s u r f a c e  area 

Volume p e r  l a t t i c e  s i t e  

Empi r i ca l  en t ropy  c o r r e c t i o n  

(1 - u . / u  ) ,  paramete r  

C h a r a c t e r i s t i c  i n t e r a c t i o n  s u r f a c e  area of  s i tes  i 

Volume f r a c t i o n  of s i t es  i 

1 0  
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